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We introduce a method to investigate the stability of wave-packet dynamics under perturbations of the
Hamiltonian. Our approach relies on semiclassical approximations, but is nonperturbative. Two separate con-
tributions to the quantum fidelity are identified: one factor derives from the dispersion of the wave packets,
whereas the other factor is determined by the separation of a trajectory of the perturbed classical system away
from a corresponding unperturbed trajectory. We furthermore estimate both contributions in terms of classical
Lyapunov exponents and find a decay of fidelity that is, generically, at least exponential, but may also be
doubly exponential. The latter case is shown to be realized for inverted harmonic oscillators.
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I. INTRODUCTION

It has long been appreciated that, in contrast to chaotic
classical dynamics, the time evolution of a quantum system
shows no sensible dependence on initial conditions. This fol-
lows immediately from the unitarity of quantum dynamics.
Hence, rather than being concerned with instabilities at large
times, the notion of quantum chaos is commonly reserved
for semiclassical studies that aim at relating statistical prop-
erties of stationary quantum states to dynamical properties of
chaotic classical systems �see, e.g., �1,2��. More recently,
however, the behavior of quantum time evolutions at large
times has attracted an increasing attention �see, e.g., �3–6��.
Both in the dynamics of observables �Heisenberg picture�
and in the evolution of wave functions �Schrödinger picture�
it has been proven that there exists a time scale �the so-called
Ehrenfest time�, depending on the semiclassical parameter �,
below which the quantum dynamics can be well approxi-
mated in terms of the associated classical time evolution.
Moreover, if the classical dynamics are chaotic, this time
scale is inversely proportional to a suitable classical
Lyapunov exponent.

Some time ago Peres suggested �7� that instead of study-
ing the behavior of quantum dynamics under a change of
initial conditions one should investigate its stability under
perturbations of the Hamiltonian. Suppose that an initial state

� is evolved under the unitary dynamics Û0�t� generated by

the quantum Hamiltonian Ĥ0, one compares this with the

evolution Û��t�� determined by the perturbed Hamiltonian

Ĥ�= Ĥ0+�V̂. Here V̂ is a perturbation of unit strength, and �
is a variable parameter. Then the quantum fidelity

F�t� = ����Û��t�−1Û0�t����2 �1�

measures how sensibly the dynamics reacts to this perturba-
tion. It can also be viewed as a means to quantify to what
extent the initial state can be recovered after it has been
propagated for a time t with the unperturbed dynamics, and

then the time evolution is reversed with a perturbation being
turned on. For that reason the quantity �1� is also known as
the quantum Loschmidt echo.

Peres analyzed F�t� in perturbation theory, and found an
initial decay F�t�	1−CV̂,���t /��2, where CV̂,� is a constant
that depends on the perturbation and on the initial state.
Since the reliability of perturbative results requires �t /� to
be small, one could view Peres’ result as indicating a Gauss-
ian decay of the fidelity on an initial time scale that depends
on � and �. Later work focused on time scales beyond this
perturbative regime or on strong perturbations, respectively,
and found an exponential decay �8–11�. Its rate is determined
either by Fermi’s golden rule �8� or, for stronger perturba-
tions, by a classical Lyapunov exponent �9,11�. Further stud-
ies related the behavior of the fidelity to the decay of �quan-
tum as well as classical� correlations �12�. All of these results
rest on a number of approximations and assumptions. Hence
the precise time scales for the different regimes depend on
various factors such as, e.g., initial states, strength of pertur-
bation, averages over random perturbations, and dynamical
properties of the corresponding classical dynamics.

Here our principal aim is to develop an alternative ap-
proach to the decay of quantum fidelity for particular initial
states. The method that we shall introduce below is non-
perturbative �quantum mechanically as well as classically�
and employs only semiclassical approximations with a rigor-
ous control over the errors. Previous semiclassical studies of
fidelity decay used the Van Vleck–Gutzwiller propagator for
the time evolution of Gaussian initial states �9–11,13�. This
procedure takes care of the leading term in an expansion in
powers of �, with an error that is, formally, smaller by a
factor of �. For finite times this is indeed true, but there is no
analytical control over the semiclassical error that arises in
estimates of the fidelity decay at large times. Our method,
however, allows to bound the semiclassical error in terms of
the linear stability of an associated classical dynamics. It can
in particular be applied to Gaussian states. Although our ap-
proach requires no particular assumptions about the nature of
the classical dynamics, we are mostly interested in the case
of chaotic �i.e., exponentially unstable� classical trajectories.
In that case we find a decay of fidelity prior to the Ehrenfest
time that generically is at least exponential. It may also be
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doubly exponential, which we show to be the case in the
example of inverted harmonic oscillators.

This paper is organized as follows. In Sec. II we introduce
the wave packets that we shall consider as initial states and
review their semiclassical dynamics. The decay of quantum
fidelity is investigated in Sec. III, with an emphasis on the
behavior of Gaussian states. An exact calculation of the fi-
delity for inverted harmonic oscillators is performed in Sec.
IV. We finally summarize our findings in Sec. V. Three ap-
pendixes are devoted to a number of technical consider-
ations: We first review the metaplectic representation, then
discuss a transformation of positive-definite, symmetric ma-
trices to a diagonal form, and finally collect estimates of
matrix norms and singular values.

II. LOCALIZED WAVE PACKETS

The initial states to which our approach applies are wave
packets with a localization both in position and momentum.
By this we understand a concentration of the quantum state
in a suitable phase space representation on a single point,
when the semiclassical limit is performed by passing to a
small �effective� Planck’s constant �. We specify the wave
packets in terms of normalized, smooth, and rapidly decreas-
ing functions ��x� �Schwartz test functions� of x�Rd. Ex-
amples for this are provided by the Gaussian functions

�Z�x� = 
det Im Z

�d �1/4

e�i/2�x·Zx, �2�

where Z is a complex, symmetric d�d matrix with positive-
definite imaginary part.

For the purpose of semiclassical investigations we intro-
duce the scaling

���x� = �−d/4��x/��� . �3�

This produces quantum states that are semiclassically con-
centrated at zero in position and in momentum. Such a phase
space localization is best analyzed in the Wigner representa-
tion

W������,x� =
 ���x − y/2����x + y/2�e−�i/��y·�dy �4�

which, if multiplied by �2���−d, converges to ��� ,x� as �
→0. A subsequent application of the phase space translation

D̂�p,q� = e−�i/���q·P̂−p·Q̂� �5�

therefore yields a wave packet

��p,q�
� �x� = e−�i/2��p·qD̂�p,q����x� = e�i/��p·�x−q����x − q�

�6�

with phase space localization at the point �p ,q�. The phase
convention made here is introduced for convenience; it
merely simplifies some of the expressions below.

The time evolution of such a state, generated by a quan-

tum Hamiltonian Ĥ that arises as a Weyl quantization of a
classical Hamiltonian H�p ,q�,

Ĥ��x� =
/

H
p,
x + y

2
�e�i/��p·�x−y���y�

dp dy

�2���d , �7�

can be determined semiclassically �3,14� to be

Û�t���p,q�
� = e�i/��RtD̂�pt,qt��̂�St��� + Ot���� . �8�

The main term on the right-hand size �RHS� is again a wave
packet of the type �6�, but now localized at �pt ,qt�. This is
the point on the trajectory emerging in time t from the initial
point �p ,q� under the classical dynamics generated by the
Hamiltonian H�p ,q�. Moreover,

Rt = 

0

t

�q̇s · ps − H�ps,qs��ds �9�

is the action of this trajectory and St is the associated stability
matrix. This is a real, symplectic 2d�2d matrix that arises
as a solution of

Ṡt = JH��pt,qt�St, S0 = 1 . �10�

Here J is the symplectic unit �A3� and H��p ,q� is the Hes-
sian matrix of the Hamiltonian. Equivalently, the stability
matrix is given as

St =�
�pt

�p

�pt

�q

�qt

�p

�qt

�q
� . �11�

The wave packet at time t on the RHS of Eq. �8� arises
from the initial state �� through the application of a unitary
operator consisting of two contributions: the first factor is the
metaplectic operator �̂�St� that provides a double valued rep-
resentation of the symplectic group �of linear canonical
transformations�; see Appendix A and �15–17� for details. As
can be drawn from �A8�, a metaplectic operator does not
change the semiclassical phase space localization. In �8� it is
rather responsible for the dispersion of the wave packet. The
second factor D�pt ,qt� then provides a translation of the
wave packet along the classical trajectory. Finally, the error
term Ot���� stands for a vector whose norm can be estimated
from above by K�t���. The function K�t�	0 contains the
linear stability of the trajectory �pt ,qt�. If the latter is expo-
nentially unstable with maximal Lyapunov exponent 
	0,
the function K�t� grows like te3
t as t→� �3�. Therefore, as
long as t�TE���, with an Ehrenfest time TE���= �ln �� /6
,
the error term remains small. In contrast, if the trajectory is
stable �in an integrable system or on a Kolmogorov-Arnold-
Moser torus� the growth of K�t� is algebraic �like t4� and
hence TE���=C�−1/8. In any case, this finding enables one to
extend the validity of the semiclassical evolution �8� to infi-
nite times, when �→0. We remark that the main term in �8�
actually is the leading contribution in a systematic semiclas-
sical expansion �3�. If this is carried on to the Nth term, the
error is Ot��N/2� and can also be controlled up to TE���. At
the Ehrenfest time the semiclassical representation �8� in
terms of a single classical trajectory breaks down. Beyond
this time scale a semiclassical time evolution requires con-
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siderably finer details of the classical phase space structures
�6�.

In order to determine the Wigner representation of the
semiclassically leading term on the RHS of Eq. �8� one has
to exploit the behavior of W��� for a quantum state � under
phase space translations,

W�D̂�p,q�����,x� = W����� − p,x − q� , �12�

and under metaplectic transformations; see �A8�. This yields

W�D̂�pt,qt��̂�St������,x�

= W���p,q�
� ���p,q� + St

−1�� − pt,x − qt�� . �13�

Hence, in phase space representation the leading semiclassi-
cal contribution to the time evolution of a wave packet, be-
low the Ehrenfest time, is controlled by an approximate clas-
sical dynamics with trajectories

��̃t, x̃t� = �p,q� + St
−1�� − pt,x − qt� . �14�

Viewed as a map from �� ,x� to ��̃t , x̃t�, this is the inverse to
the linearization of the full classical dynamics about the tra-
jectory �pt ,qt�. The trajectories �14� also occur when propa-
gating observables in the Heisenberg picture in a semiclassi-
cal approximation corresponding to the RHS of Eq. �8�; see
�18�.

III. FIDELITY DECAY

The quantum fidelity of an initial wave packet of the type
�6� can most conveniently be calculated in the Wigner rep-
resentation,

F�t� = ��Û0�t���p,q�
� �Û��t���p,q�

� ��2

=
/

W�Û0�t���p,q�
� ���,x�W�Û��t���p,q�

� ���,x�
d
 dx

�2���d .

�15�

We now introduce the semiclassical result �8� for the per-
turbed and for the unperturbed time evolution, respectively,
to this expression. The corresponding unperturbed and per-
turbed classical trajectories will be denoted as �pt

0 ,qt
0� and

�pt
� ,qt

��. After using the relation �12� one may change vari-
ables and define ��pt ,�qt�= �pt

0−pt
� ,qt

0−qt
��. For the leading

semiclassical contribution to Eq. �15� one thus obtains

Fscl�t� =
/

W��̂�St
0������ − �pt,x − �qt�

�W��̂�St
�������,x�

d
 dx

�2���d . �16�

Since semiclassically the Wigner representations of localized
wave packets, if divided by �2���d, approach � functions,
one obtains from Eq. �16� that the classical limit of the quan-
tum fidelity is

lim
�→0

F�t�
�2���d = ���pt,�qt� , �17�

when in this limit t is kept below the Ehrenfest time.

For a more detailed study of the expression �16� we now
restrict ourselves to Gaussian initial states of the form �2�
with the scaling �3�. The action of a metaplectic operator on
such states can be calculated explicitly �15–17�,

�̂�S��Z,� = ei��/2���S�Z�,�. �18�

Here S�Z� denotes a map, given by the symplectic matrix S,
on the space of complex, symmetric matrices with positive-
definite imaginary part, to itself,

S�Z� = �AZ + B��CZ + D�−1, S = 
A B

C D
� . �19�

Furthermore, � is a Maslov phase defined through

ei��/2�� = 
 det Im Z

det Im S�Z��
1/4

�det�CZ + D��−1/2. �20�

The Wigner transform of such a Gaussian state is well known
to be a Gaussian in phase space,

W��Z,����,x� = 2de−�1/����,x�·GZ��,x�, �21�

where

GZ = 
 �Im Z�−1 − �Im Z�−1 Re Z

− Re Z�Im Z�−1 Im Z + Re Z�Im Z�−1 Re Z
�

�22�

is a symmetric, symplectic, and positive-definite 2d�2d ma-
trix with unit determinant. The behavior of �22� under the
transformation �19� can be inferred from an application of a
metaplectic operator to a Gaussian state in the Wigner rep-
resentation �21�. This way, from Eqs. �18� and �A8� one con-
cludes that

GS�Z� = �S−1�TGZS−1. �23�

Now, Eq. �16� is a Gaussian integral that can immediately
be evaluated, and the result may be factorized according to

Fscl�t� = Fdisp�t�Fclass�t� . �24�

The first factor

Fdisp�t� = �det�GSt
0�Z� + GSt

��Z���−1/2 �25�

is determined by the dispersion of the wave packets. This
interpretation follows from the fact that setting �pt and �qt to
zero in Eq. �16�, and therefore removing the phase space
translations that arise from Eq. �8�, the integral would ex-
actly yield �25�. In fact, Fdisp�t� measures the differences in
the dispersions caused by the two dynamics in question. This
contribution is independent of �. The time dependence of
�25� follows from the relation �23� with St

0 and St
�, respec-

tively. It is therefore completely determined by the linear
stabilities of the perturbed and the unperturbed classical tra-
jectory. In addition to this, the second factor Fclass�t� is influ-
enced by the actual separation ��pt ,�qt� of these trajectories.
It reads
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Fclass�t� = 2d exp
−
1

�
��pt,�qt� · GSt

0�Z��1 − �t,�
−1���pt,�qt��,

�t,� = 1 + GSt
0�Z�

−1 GSt
��Z�, �26�

and, despite its � dependence, essentially represents a clas-
sical fidelity in the sense of �17� since it is localized on the
separation of the classical trajectories. This also explains the
necessity of � in �26�. We remark that expressions equivalent
to �24�–�26� have independently been obtained by Combes-
cure and Robert �19�.

At this point we stress that in general the separation
��pt ,�qt� of the trajectories for large t differs essentially from
the corresponding behavior of the linearized dynamics. In
particular, an exponential instability expressed in terms of
positive Lyapunov exponents does not imply an exponential
growth of the norm of ��pt ,�qt�. In fact, for the dynamics of
a bound system this quantity obviously is bounded. But even
then the exponent in Eq. �26� will often grow exponentially
due to the presence of the stability matrices St

0 and St
�.

An alternative view of the semiclassical fidelity for
Gaussian wave packets is suggested by the fact that the
Wigner representations �21� are positive. Hence, despite the
presence of �, one might be tempted to interpret them as
classical phase space densities. In this context one would
exploit the relation �13� to replace �16� with

Fscl�t� =
/

W���p,q�
Z,� ���̃t

0, x̃t
0�W���p,q�

Z,� ���̃t
�, x̃t

��
d
 dx

�2���d . �27�

If it were not for the appearance of � and of the approximate
classical trajectories �14� instead of the actual ones, this ex-
pression would be the classical fidelity discussed in �20�.
Due to the approximate �i.e., linearized� trajectories the
quantity �27�, however, is more closely related to the classi-
cal echoes studied in �21�, when the diffusion constant is set
to zero. Beyond the Ehrenfest time this analogy breaks down
because then the semiclassical time evolution can no longer
be based on single classical trajectories.

The contributions of Fdisp�t� and of Fclass�t� to the decay of
fidelity will now be studied separately. This procedure makes
sense if � simultaneously approaches zero in order to main-
tain the condition t�TE���. In this regime the individual
contributions to F�t� determine the leading behavior of the
fidelity as t→� and �→0 completely.

A. Contribution of wave-packet dispersion

We begin with discussing the behavior of Fdisp�t� as t
→�. Since both GSt

0�Z� and GSt
��Z� are symmetric and positive

definite, we can convert these matrices into a diagonal form
as explained in Appendix B. This implies that there exists a
real, invertible matrix Mt such that Mt

TGSt
0�Z�Mt=1, and at the

same time Mt
TGSt

��Z�Mt=Dt is diagonal, with the �positive�
eigenvalues �k�t� of

GSt
0�Z�

−1 GSt
��Z� = St

0GZ
−1��St

��−1St
0�TGZ�St

��−1 �28�

on the diagonal. Furthermore, since GZ is symmetric and
positive definite, it is a square of a symmetric and positive

definite matrix GZ=�2. Hence, Eq. �28� is conjugate to a
matrix Nt

TNt, with Nt=��St
��−1St

0�−1. This means that the ei-
genvalues �k�t� of Eq. �28� are squares of the singular values
�k�t� of Nt �see Appendix C�. Since � is independent of t the
time dependence of �k�t� therefore is asymptotically deter-
mined by the singular values �̃k�t� of �St

��−1St
0. More pre-

cisely, there exist constants C1 ,C2	0 such that

C1�̃k�t� � �k�t� � C2�̃k�t� . �29�

We also exploit the fact that the product �St
��−1St

0 of two
symplectic matrices is again symplectic. This implies that its
singular values �̃k�t� arise in pairs of mutually inverse num-
bers. Thus, they can be ordered as in Eq. �C7�.

The determinant that yields Fdisp�t� according to �25� can
be evaluated as in Appendix B; see Eq. �B1�. Taking into
account that GSt

0�Z� has unit determinant and that the eigen-
values �k�t� of Eq. �28� are given by squares of the singular
values �k�t�, we obtain

Fdisp�t� = 
�
k=1

2d

�1 + �k�t�2��−1/2

. �30�

The estimates �29� then allow us to bound �30� from below
and above in terms of


�
k=1

d

��̃k�t�2 + 2 + �̃k�t�−2��−1/2

. �31�

More specifically, there exist constants C3 ,C4	0 such that

C3�
k=1

d

�̃k�t�−1 � Fdisp�t� � C4�
k=1

d

�̃k�t�−1. �32�

Since the product over the inverse singular values contains
only factors with �̃k�t��1, one can introduce the simple es-
timate

�̃max�t� � �
k=1

d

�̃k�t� � �̃max�t�d−1�̃d�t� . �33�

The quantities �̃k�t� are singular values of a product of two
symplectic matrices to which the inequalities �C8� may be
applied. Thus, when choosing k=1 in �C8�, the LHS of �33�
can be bounded from below by

max��max�St
0�

�max�St
��

,
�max�St

��
�max�St

0�� � �̃max�t� . �34�

Furthermore, the maximal singular values of St
� and St

0 deter-
mine the maximal Lyapunov exponents according to


0/� = lim sup
t→�

1

t
ln�St

0/��HS = lim sup
t→�

1

t
ln �max�St

0/�� ,

�35�

so that in case �
=
�−
0�0 the LHS of Eq. �34� is
asymptotic to e��
�t as t→�.

The RHS of Eq. �33� may now be estimated in a similar
manner: Apply the rightmost inequality in �C8� to each fac-
tor, and for the term with k=d use that �d�St

0/��=1 �see Ap-
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pendix C�. This finally yields the upper bound

��max�St
0��max�St

���d−1 min��max�St
0�,�max�St

��� �36�

for �̃max�t�d−1�̃d�t�. Asymptotically, as t→� this approaches
exp{��d−1��
0+
��+min�
0 ,
���t}.

The above estimates can be summarized to provide the
following statement about the asymptotic behavior of
Fdisp�t�. There exist constants C5 ,C6	0 such that

C5e−Lt � Fdisp�t� � C6e−Lt, �37�

with

��
� � L � �d − 1��
0 + 
�� + min�
0,
�� . �38�

Thus, once the maximal Lyapunov exponent of the perturbed
dynamics differs from the unperturbed one, the asymptotic
decay of Fdisp�t� is essentially exponential.

B. Contribution of classical trajectories

The remaining factor Fclass�t� that determines the decay of
fidelity is influenced by the linear stabilities of the perturbed
and of the unperturbed classical trajectories as well as by the
separation ��pt ,�qt� of the trajectories. The contribution of
the stabilities can be treated in a similar manner as above,
whereas the behavior of the separation is largely unknown in
a general linearly unstable system. Precise estimates are rare,
but can possibly be achieved in particular cases �see, e.g.,
Sec. IV and �22��.

A first simplification of the expression �26� can be
achieved by introducing the matrix Mt that converts GSt

0�Z�

and GSt
��Z� into a diagonal form. The exponent of �26�, with-

out the factor −1/�, then reads

Mt
−1��pt,�qt� · �1 − �1 + Dt�−1�Mt

−1��pt,�qt� , �39�

where, as above, Dt=Mt
TGSt

��Z�Mt is the diagonal matrix with
the eigenvalues �k�t�	0 on its diagonal. The quadratic form
1− �1+Dt�−1 defined by �39� is positive definite; its eigenval-
ues are �k�t� / �1+�k�t��	0. Thus, whatever value the sepa-
ration ��pt ,�qt� attains, one immediately concludes that
Fclass�t��2d. And although the eigenvalues �k�t� may even-
tually grow as t→�, this quadratic form remains bounded.
Any influence of the linear stabilities on Fclass�t� hence is
encoded in the matrices Mt as they appear in �39�.

An upper bound for the expression �39� follows from the
estimate �C9� derived in Appendix C when choosing A=1
− �1+Dt�−1 and B=Mt

−1. For the calculation of �A�tr we notice
that this is given by the sum of the eigenvalues �k�t� / �1
+�k�t��. These can be grouped in pairs with �k�t� and
�k�t�−1 since the latter are eigenvalues of a symplectic ma-
trix. Thus

�A�tr = �
k=1

d 
 �k�t�
1 + �k�t�

+
�k�t�−1

1 + �k�t�−1� = d . �40�

Furthermore, we observe that

�Mt
−1�HS

2 = tr�MtMt
T�−1 = �GSt

0�Z��tr. �41�

Using Eq. �23�, the rightmost expression can be factorized
with the help of �C4�, leading to

�Mt
−1�HS

2 � �St
0�HS

2 �GZ�HS. �42�

Our final upper bound for �39� therefore reads

d�GZ�HS�St
0�HS

2 ��pt
2 + �qt

2� . �43�

For the contribution �26� to the fidelity this provides us with
a lower bound of the form

Fclass�t� � 2d exp
−
d

�
�GZ�HS�St

0�HS
2 ��pt

2 + �qt
2�� . �44�

In addition, if the unperturbed trajectory possesses a positive
maximal Lyapunov exponent, the factor �St

0�HS
2 grows asymp-

totically like e2
0t; see �35�.
In order to achieve a lower bound for �39� according to

�C10� we first notice that the symplecticity of �28� implies
�min�t�=�max�t�−1=�max�t�−2. This leads to

�min�A� =
1

1 + �max�t�2 �
1

2
�max�t�−2. �45�

Then Eqs. �29� and �C6� yield the further bound

�min�A� � K1�max��St
��−1St

0�−2 � K1�max�St
��−2�max�St

0�−2

�46�

with some constant K1	0. We now require a lower bound
for �2d�B�2=�2d�Mt

−1�2, and first notice that this quantity is
the lowest eigenvalue of �MtMt

T�−1=GSt
0�Z�, which in turn is

the inverse of the largest eigenvalue of this matrix. Making
use of the relation �C6� we then conclude that

�max�GSt
0�Z�� = �max���St

0�−1�TGZ�St
0�−1�

� �max�GZ��max�St
0�2. �47�

Collecting the above estimates therefore provides us with the
lower bound

K2�max�St
��−2�max�St

0�−4��pt
2 + �qt

2� �48�

for Eq. �39�, with some K2	0. Hence,

Fclass�t� � 2d exp
−
K2

�

�pt
2 + �qt

2

�max�St
��2�max�St

0�4� . �49�

Furthermore, in the case of linearly unstable trajectories �35�
implies that

�max�St
��2�max�St

0�4 	 exp��2
� + 4
0�t� �50�

as t→�.
We have so far refrained from estimating the squared dis-

tance �pt
2+�qt

2 the perturbed trajectory can separate itself
away from the unperturbed one. However, any further state-
ments about the decay of Fclass�t� require some knowledge of
the behavior of that distance. As already mentioned, this
seems to be difficult to be obtained. For example, one can in
general not exclude that this quantity vanishes infinitely of-

STABILITY OF WAVE-PACKET DYNAMICS UNDER¼ PHYSICAL REVIEW E 73, 026223 �2006�

026223-5



ten �see �22� for a particular case�, or asymptotically ap-
proaches zero. Such situations may occur, if the perturbation
V�p ,q� is confined to a bounded part of phase space, but the
trajectories are forced to leave this domain in a particular
channel. According to Eq. �26�, at those instances where
�pt

2+�qt
2 vanishes, Fclass�t� clearly acquires its maximal pos-

sible value 2d. On the other hand, if the energy shells corre-
sponding to both the perturbed and the unperturbed classical
Hamiltonians are bounded, �pt

2+�qt
2 will necessarily be

bounded, too.
However, if the classical motion is unbounded �as in the

example in Sec. IV�, an upper bound for this distance would
be helpful. In order to achieve such an estimate we consider
a Taylor expansion of �pt

� ,qt
�� about �=0 with remainder

term of first order, i.e.,

��pt,�qt� = − ��� d

d��
�pt

��,qt
����

��=��

, �51�

where �� �0,1�. The derivative on the RHS can now be
identified as a solution of a differential equation in the vari-
able t. Abbreviating

z��t� =
d

d�
�pt

�,qt
�� , �52�

the fact that �p0
� ,q0

��= �p ,q� for all � implies the initial con-
dition z��0�=0. Moreover, a derivative of Hamilton’s equa-
tions of motion

�ṗt
�, q̇t

�� = JH���pt
�,qt

�� �53�

with respect to � yields

ż��t� = JH���pt
�,qt

��z��t� + JV��pt
�,qt

�� , �54�

where V��p ,q� denotes the gradient of the function V�p ,q�
whose Weyl quantization yields the perturbation V̂ of the
quantum Hamiltonian. A solution of the inhomogeneous dif-
ferential equation �54� with the prescribed initial condition is
then provided by the integral

z��t� = St
�


0

t

�Ss
��−1JV��ps

�,qs
��ds . �55�

Used on the RHS of Eq. �51� this expression allows us to
relate the separation ��pt ,�qt� of the trajectories to their lin-
ear stabilities and properties of the derivative of the classical
perturbation V.

A quantitative upper bound that immediately follows from
Eq. �55� is

0 � ���pt,�qt�� � ��t�St
���HS sup

s��0,t�
�Ss

���HS
1

t



0

t

�V��ps
��,qs

����ds

� �t��t
��2 sup

���0,1�

1

t



0

t

�V��ps
��,qs

����ds . �56�

Here we have introduced

�t
� = sup

s��0,t�,���0,1�
�Ss

���HS, �57�

whose asymptotic behavior in the case of linearly unstable
trajectories is controlled by the exponent


̄� = sup
���0,1�


��. �58�

Furthermore, under favorable circumstances the time average

V�̄ of V� in �56� is finite as t→�; then the asymptotic be-
havior of the RHS in �56� for large times is given by

�V�te2
̄�t. �59�

This will, e.g., be the case if either the trajectory remains in
a bounded set, or the derivative V� is a bounded function on
the respective energy shell.

IV. INVERTED OSCILLATORS

We want to discuss a simple and exactly solvable example
that nevertheless possesses the typical features of exponen-
tially unstable classical dynamics: a d-dimensional inverted
harmonic oscillator. In that case the Hamiltonian is quadratic
in position and momentum and therefore the semiclassical
propagation �8� is exact, i.e., the error term vanishes.

To be specific, let

H0�p,q� =
1

2
p2 −

�2

2
q2, �60�

and define

H��p,q� = H0�p,q − �a� , �61�

so that, up to a constant, V�q�=�2a ·q. This perturbation con-
sists of a phase space translation of the unperturbed Hamil-
tonian and hence is of the same type as the one discussed in
�23�. The equations of motion generated by the unperturbed
and by the perturbed Hamiltonian, respectively, can be
solved explicitly, leading to

pt
0 = p cosh �t + q� sinh �t ,

qt
0 = q cosh �t + p�−1 sinh �t , �62�

and

�pt = a�� sinh �t , �qt = a��cosh �t − 1� . �63�

From Eqs. �11�, �62�, and �63� one, moreover, obtains

St
� = St

0 = 
 cosh �t1 � sinh �t1

�−1 sinh �t1 cosh �t1
� . �64�

This implies an accidental coincidence of the unperturbed
and the perturbed Lyapunov exponents: 
0=�=
�. Further-
more, GSt

0�Z�=GSt
��Z� so that Fdisp�t�=2−d, reflecting the fact

that the coinciding perturbed and unperturbed linearized dy-
namics lead to the same dispersions of the wave packets.
Since �
=0, this finding is in accordance with the bounds
�38�. With the help of the relation �A8� and a change of
variables the expression �16� for the fidelity can now be
brought into the form
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F�t� =
 
 W�������,y� − St
−1��pt,�qt��W������,y�

d� dy

�2���d .

�65�

Therefore, in this example the quantum fidelity is crucially
determined by both the linear stability �64� and the separa-
tion �63� of the classical trajectories.

For simplicity one can imagine the initial wave packet to
be a Gaussian �2� with Z= i1 that is localized at the unstable
fixed point �p ,q�= �0,0� of the unperturbed classical dynam-
ics. Thus, �pt

0 ,qt
0�= �0,0� for all t, so that the unperturbed

time evolution �8� fixes the center of the wave packet and
only forces it to disperse according to the action of the meta-
plectic operator related to �64�. The perturbed dynamics,
however, pushes the center away from the fixed point ac-
cording to �63�. This happens with an exponential rate that
follows from the asymptotic behavior

���pt,�qt�� 	
��a�

2
�
2 + 1e
t, t → � , �66�

of the distance, which may be compared with the corre-
sponding asymptotics

��a�
2te2
t �67�

of the upper bound �56�; see also �59�.
For Gaussian states either �26� or �65� can be evaluated

directly, yielding

F�t� = exp
−
�2a2

2�
��1 − cosh 
t�2 + 
2 sinh2 
t�� . �68�

In this example the quantum fidelity therefore decays ex-
tremely fast, namely, in a double exponential manner. We
stress that neither have approximations been performed nor
have any assumptions entered, and hence the result holds
unconditionally. Clearly, this finding is at variance with the
previous predictions of an exponential decay of fidelity.
However, it obviously complies with the bounds �44� and
�49� derived in Sec. III. We remark that the double exponen-
tial decay is caused by both the separation �63� of the trajec-
tories and the exponential instability of the linearized dy-
namics �64� which combine to produce the exponent in �68�.
Each of these contributions alone would lead to such a decay.

V. CONCLUSIONS

Our approach to the quantum fidelity of localized wave
packets led us to distinguish two effects that derive from two
separate contributions to the semiclassical evolution prior to
the Ehrenfest time.

One effect is caused by the dispersion of the wave pack-
ets, which semiclassically originates from the metaplectic
representation of the linearized classical dynamics. Since ge-
nerically the unperturbed and the perturbed classical dynam-
ics possess different linearizations, the resulting noncoincid-
ing dispersions cause an eventually exponential contribution
Fdisp�t� to the decay of fidelity as described by Eqs. �37� and
�38�.

A second effect is due to the separation of the perturbed
classical trajectory away from the unperturbed one. Since the
centers of the wave packets follow their associated classical
trajectories, this divergence forces the overlap of the unper-
turbed with the perturbed time evolution of the given initial
state to decrease. We estimated this contribution Fclass�t� for
Gaussian wave packets and identified an influence of the
linear stabilities as well as of the separation of the trajecto-
ries. Since in general the latter cannot be well controlled, we
were unable to determine a uniform expression for this fac-
tor. The bounds �44�, �49�, and �56� that we obtained allow
for decays that are exponentially faster, or slower, than ex-
ponential. Of course, the further factor Fdisp�t� always en-
sures that the fidelity decays at least exponentially.

In view of the previous predictions of an exponential fi-
delity decay a contribution that decreases in a double expo-
nential manner might come as a surprise. In the example of
inverted harmonic oscillators, however, we saw that such a
behavior is indeed possible. In that case this was caused by
both the linear instability of the classical motion and by the
exponentially growing separation of the trajectories. The lat-
ter effect is certainly not generic if one has chaotic systems
with bounded energy shells in mind. Nevertheless, in our
example the linear instability alone would cause a doubly
exponentially decreasing factor. And this is in perfect agree-
ment with the bound �44� that applies in the general case,
even if the separation of trajectories does not exceed a given
bound.

Finally, we would like to take the opportunity of having
the completely explicit result �68� for inverted oscillators
available to discuss the restriction to times below the Ehren-
fest time that we had to impose in our previous semiclassical
studies of the fidelity. Since for large times the exponent in
�68� behaves as const� ��2 /��e2
t, at t=TE���= �ln �� /6
 it
is of the order �2�−4/3. Hence, in order that �68� deviates
appreciably from one before the Ehrenfest time the strength
of the perturbation must satisfy the condition ���2/3. This
may become relevant if one treats the perturbation of the
dynamics in either quantum or classical perturbation theory.
Thus, although the restriction to times below TE��� is not
necessary in this example, this discussion shows that the
characteristic decay of fidelity sets in prior to the Ehrenfest
time once the perturbation does not become too small in the
semiclassical limit. This is in particular true in our nonper-
turbative approach in which � is fixed.
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APPENDIX A: METAPLECTIC REPRESENTATION

In this appendix we collect some important facts about the
symplectic group and the metaplectic representation. For fur-
ther details see �15–17�.

The symplectic group consists of the linear canonical
transformations �p ,q�� �p� ,q�� with

STABILITY OF WAVE-PACKET DYNAMICS UNDER¼ PHYSICAL REVIEW E 73, 026223 �2006�

026223-7



p� = Ap + Bq , q� = Cp + Dq . �A1�

The real 2d�2d matrix

S = 
A B

C D
� �A2�

then fulfills STJS=J, where

J = 
0 − 1

1 0
�, J2 = − 1 , �A3�

is the symplectic unit. The symplectic group is generated by
the matrices

SA = 
A 0

0 �AT�−1 �, SC = 
1 C

0 1
�, J , �A4�

where A is an invertible matrix and C is symmetric.
A quantization of a linear canonical transformation �A1�

requires a unitary ray representation of the symplectic group.
This can be obtained from the observation that the operators

D̂�p ,q� and D̂��ST�−1�p ,q�� �see Eq. �5�� each provide a uni-
tary irreducible representation of the Heisenberg group. Ac-
cording to the Stone–Von Neumann theorem there hence ex-
ists a unitary operator �̂�S� such that

D̂��ST�−1�p,q�� = �̂�S�D̂�p,q��̂�S�−1. �A5�

Choosing S=S1S2 furthermore implies the multiplicative
property

�̂�S1S2� = ei��S1,S2��̂�S1��̂�S2� . �A6�

In fact, the phase factor can be chosen to be ±1. The meta-
plectic operators �̂�S� determine a double-valued represen-
tation of the symplectic group which is also known as the
metaplectic representation.

Up to a sign the metaplectic representation is fixed once
the metaplectic operators for the generators �A4� are given.
Exploiting the relation �A5�, one obtains

�̂�SA���x� = �det A��ATx� ,

�̂�SC���x� = ± e�i/2��x·Cx��x� ,

�̂�J���p� = id/2�̂�p� �A7�

for them, where �̂�p� denotes the momentum representation
of �.

An explicit calculation based on the relation �A5� finally
reveals that the Wigner representation of a quantum state is
covariant under linear canonical transformations,

W��̂�S�����,x� = W����S−1��,x�� . �A8�

Thus, if � is localized at the point �p ,q� in phase space, the
transformed state �̂�S�� is concentrated at S�p ,q�.

APPENDIX B: DIAGONAL FORM OF POSITIVE
MATRICES

It is well known that if two real and symmetric matrices
commute, they can be simultaneously diagonalized by an

orthogonal transformation. Less appreciated is the possibility
of converting noncommuting, but positive definite, symmet-
ric matrices into a diagonal form with a single transforma-
tion:

Let A and B be real, symmetric, and positive definite n
�n matrices. Then there exists a real, invertible �not neces-
sarily orthogonal� matrix M such that MTAM =1 and MTBM
is diagonal, with the eigenvalues � j�A−1B� of the positive
definite matrix A−1B on the diagonal. Moreover,

det�A + B� = �
j=1

n

� j�A��1 + � j�A−1B�� . �B1�

A proof of this statement is not difficult. Let O be an or-
thogonal matrix such that OTAO=D is diagonal �and positive
definite�. Define U=OD−1/2; then UTAU=1, and UTBU is
symmetric and positive definite. Furthermore, since UTBU
=U−1A−1BU, the matrices UTBU and A−1B have identical
spectra. Hence there exists an orthogonal matrix O1 such that
O1

TUTBUO1 is diagonal, with the eigenvalues � j�A−1B� on
the diagonal. Then define M =UO1 to obtain the matrix M of
the statement.

APPENDIX C: MATRIX NORMS AND SINGULAR VALUES

Real n�n matrices can be estimated in terms of various
norms, for which there exists a number of inequalities that
we want to review in this appendix. More details can, e.g., be
found in �24�.

The operator norm is defined as

�A�op = sup
�x�=1

�Ax� , �C1�

where �x�=�x2 is the Euclidian norm of a vector x�Rn. The
trace norm, however, is given by

�A�tr = tr�ATA . �C2�

Finally, we consider the Hilbert-Schmidt norm

�A�HS = �trATA . �C3�

All of these matrix norms possess the multiplicative property
�AB�� �A��B�. Moreover, they fulfill

�A�op � �A�HS � �A�tr, �AB�tr � �A�HS�B�HS. �C4�

In addition, for symplectic matrices S one obtains �S−1�tr/HS
= �S�tr/HS.

In general a real n�n matrix A cannot be diagonalized.
However, ATA is symmetric and positive definite and there-
fore possesses n non-negative eigenvalues. Their positive
square roots � j�A� are the singular values of A, which we
order as

�max�A� = �1�A� � �2�A� � ¯ � �n�A� � 0. �C5�

Furthermore, Fan’s inequality �see �24�� implies for the sin-
gular values of products that

�k�AB� � �max�A��k�B� ,
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�k�AB� � �max�B��k�A� . �C6�

The singular values of symplectic matrices occur in pairs of
mutually inverse numbers. Since in that case n must be even,
we write n=2d, and choose the following ordering:

�1�S� � ¯ � �d�S� � �d�S�−1 � ¯ � �1�S�−1.

�C7�

In addition to the upper bound �C6�, in the symplectic case
one can also find a lower bound that is based on the fact that
�max�S−1�=�max�S�. Choose first A=S1S2 and B=S2

−1, and
then A=S1

−1 and B=S1S2 in �C6�. This results in

max� �k�S1�
�max�S2�

,
�k�S2�

�max�S1��
� �k�S1S2�

� min��k�S1��max�S2�,�k�S2��max�S1�� . �C8�

In Sec. III B we need to estimate a quadratic form Bv ·ABv

in terms of suitable norms of the positive definite, symmetric
matrix A and of the invertible matrix B. An upper bound
follows from the definition �C1� of the operator norm and a
subsequent application of �C4�,

Bv · ABv � �A�op�B�op
2 �v�2 � �A�tr�B�HS

2 �v�2. �C9�

A lower bound can be gained from the fact that the quadratic
form defined by A attains its minimum at the eigenvector
corresponding to the lowest eigenvalue �min�A�	0. Thus

Bv · ABv � �min�A��Bv�2 = �min�A�v · BTBv

� �min�A��n�B�2�v�2, �C10�

since by Eq. �C5� �n�B� is the lowest singular value of B.
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